Skip to main content

Enterprise Performance Optimization Guide

This guide provides comprehensive strategies to optimize your CyberSecFeed API v1.5 integration for maximum performance, minimal bandwidth usage, and efficient credit consumption with enterprise-grade features.

Performance Overview

The CyberSecFeed API v1.5 delivers enterprise-grade performance with advanced optimization layers:

  • Edge Caching: 95%+ cache hit rates with Cloudflare CDN
  • Enterprise Batch Operations: 86% cost savings with POST /api/v1/cve/batch
  • Advanced Field Selection: Up to 85% payload reduction
  • Smart Sorting: 8 sort options for optimized queries
  • Exploit Filtering: Targeted vulnerability detection
  • ETag Support: Efficient client-side caching
  • Credit Optimization: Transparent, value-based pricing

Enterprise Performance Metrics (v1.5)

OperationP95 Response TimeCache Hit RateCreditsPayload SizeOptimization
CVE Detail (basic)<150ms95%5~2KBStandard
CVE Detail + Field Selection<100ms95%5~0.3KB (85% ↓)Optimized
Enterprise Batch (50 CVEs)<500ms85%35~50KB86% savings
CVE Search + Sorting<400ms90%1~15KB (20 results)Advanced
Exploit Filtering<300ms90%1~10KBTargeted
KEV Catalog<200ms95%1~40KBStandard

1. Enterprise Feature Optimization (v1.5)

Advanced Field Selection - 85% Payload Reduction

The most impactful v1.5 optimization is field selection combined with intelligent data loading:

# ❌ Inefficient - full payload (5 credits)
def get_full_cve(cve_id):
response = requests.get(
f"https://api.cybersecfeed.com/api/v1/cve/{cve_id}",
headers=headers
)
return response.json() # ~2KB payload

# ✅ Optimized - field selection (same 5 credits, 85% less data)
def get_essential_data(cve_id):
response = requests.get(
f"https://api.cybersecfeed.com/api/v1/cve/{cve_id}",
params={'fields': 'cve_id,severity,kev,epss'},
headers=headers
)
return response.json() # ~0.3KB payload (85% reduction!)

# ✅ Enterprise - field selection + targeted enrichment
def get_enterprise_data(cve_id, use_case='risk_assessment'):
field_configs = {
'risk_assessment': 'cve_id,severity,kev,epss',
'compliance': 'cve_id,published,severity,kev',
'threat_hunting': 'cve_id,severity,kev,epss,enrichment_status'
}

params = {'fields': field_configs[use_case]}
if use_case == 'threat_hunting':
params['include'] = 'enrichment,attack'

response = requests.get(
f"https://api.cybersecfeed.com/api/v1/cve/{cve_id}",
params=params,
headers=headers
)
return response.json()

Advanced Sorting for Performance

v1.5 introduces 8 sort options for optimized data retrieval:

# ✅ Performance-optimized CVE searches
def get_critical_vulns_optimized():
response = requests.get(
"https://api.cybersecfeed.com/api/v1/cves",
params={
'severity': 'critical', # Named severity filtering
'sort': 'severity_desc', # Sort by severity (fastest)
'fields': 'cve_id,severity,kev', # Essential fields only
'limit': 20
},
headers=headers
)
return response.json()

# ✅ EPSS-based prioritization
def get_high_probability_exploits():
response = requests.get(
"https://api.cybersecfeed.com/api/v1/cves",
params={
'exploit': 'true', # Exploit filtering (v1.5)
'sort': 'epss_desc', # Sort by EPSS score
'fields': 'cve_id,severity,epss,kev',
'limit': 50
},
headers=headers
)
return response.json()

v1.5 Performance Impact Matrix

ConfigurationResponse TimePayload SizeCreditsEfficiency Gain
Field Selection OnlyFastest85% ↓5Maximum
Default (no params)StandardBaseline5Good
Field Selection + Enrichment+20%60% ↓5Excellent
Field Selection + Full Intelligence+30%40% ↓5Premium
Enterprise Batch (50 CVEs)Single ReqBulk Opt3586% savings

Sort Performance Characteristics

Sort OptionUse CasePerformanceIndex Optimization
severity_descCritical vulnerability monitoringFastestPrimary index
published_descRecent vulnerability trackingFastTime-based index
epss_descExploitation prioritizationFastEPSS index
modified_descChange monitoringFastModified index

2. Advanced Field Selection (v1.5)

Field selection is the most powerful performance optimization in v1.5, reducing payload size by up to 85%:

# ❌ Inefficient - full response (2KB payload)
def get_full_cve(cve_id):
response = requests.get(
f"https://api.cybersecfeed.com/api/v1/cve/{cve_id}",
headers=headers
)
return response.json()

# ✅ v1.5 Optimized - field selection (0.3KB payload, 85% reduction)
def get_risk_essentials(cve_id):
response = requests.get(
f"https://api.cybersecfeed.com/api/v1/cve/{cve_id}",
params={'fields': 'cve_id,severity,kev,epss'},
headers=headers
)
return response.json()

# ✅ Enterprise - field selection + comprehensive intelligence
def get_enterprise_intelligence(cve_id):
response = requests.get(
f"https://api.cybersecfeed.com/api/v1/cve/{cve_id}",
params={
'fields': 'cve_id,published,severity,kev,epss,enrichment_status',
'include': 'enrichment,attack' # Full threat intelligence
},
headers=headers
)
return response.json() # Optimized payload with complete data

v1.5 Field Selection Presets

# Enterprise field selection patterns for maximum efficiency
V15_FIELD_PRESETS = {
'ultra_minimal': 'cve_id,severity', # 90% payload reduction
'risk_scoring': 'cve_id,severity,kev,epss', # Risk assessment essentials
'dashboard': 'cve_id,published,severity,status,kev', # Executive dashboards
'compliance': 'cve_id,published,severity,kev,source_tag', # Audit reporting
'threat_hunting': 'cve_id,severity,kev,epss,enrichment_status', # SOC operations
'enterprise_full': 'cve_id,published,modified,severity,status,kev,epss,enrichment_status' # Complete context
}

class OptimizedCVEClient:
def __init__(self, api_key):
self.api_key = api_key
self.headers = {'X-API-Key': api_key}

def get_cve_optimized(self, cve_id, preset='risk_scoring', include_intel=False):
"""Get CVE with optimized field selection"""
params = {'fields': V15_FIELD_PRESETS[preset]}

# Add intelligence based on use case
if include_intel:
if preset == 'threat_hunting':
params['include'] = 'enrichment,attack' # Full threat context
elif preset == 'compliance':
params['include'] = 'acsc' # Regional compliance

response = requests.get(
f"https://api.cybersecfeed.com/api/v1/cve/{cve_id}",
params=params,
headers=self.headers
)
return response.json()

3. Enterprise Batch Operations - 86% Cost Savings

The enterprise batch endpoint is the most significant performance improvement in v1.5:

import requests

def enterprise_batch_optimized(cve_ids, api_key, optimization_level='standard'):
"""Enterprise batch with optimization levels"""

url = "https://api.cybersecfeed.com/api/v1/cve/batch"
headers = {
'X-API-Key': api_key,
'Content-Type': 'application/json'
}

# Optimization configurations
configs = {
'ultra_fast': {
'fields': ['cve_id', 'severity'], # 90% payload reduction
'include': None
},
'standard': {
'fields': ['cve_id', 'severity', 'kev', 'epss'], # 85% reduction
'include': 'enrichment'
},
'comprehensive': {
'fields': ['cve_id', 'published', 'severity', 'kev', 'epss', 'enrichment_status'],
'include': 'enrichment,attack' # Full threat intelligence
}
}

payload = {
'cve_ids': cve_ids[:50], # Maximum 50 per batch
**configs[optimization_level]
}

response = requests.post(url, json=payload, headers=headers)
return response.json()

# Cost comparison examples
def demonstrate_batch_savings():
cve_list = [f"CVE-2024-{str(i).zfill(4)}" for i in range(1, 51)]

print("Cost Comparison:")
print(f"Individual calls: {len(cve_list)} × 5 = {len(cve_list) * 5} credits")
print(f"Enterprise batch: 35 credits (flat rate)")
print(f"Savings: {((len(cve_list) * 5 - 35) / (len(cve_list) * 5)) * 100:.1f}%")

# Ultra-fast batch processing
result = enterprise_batch_optimized(cve_list, api_key, 'ultra_fast')
print(f"Processed {len(result['data']['cves'])} CVEs with maximum efficiency")

return result

Batch Performance Optimization

def process_large_dataset_optimized(all_cve_ids, api_key):
"""Process thousands of CVEs with enterprise efficiency"""

batch_size = 50
all_results = []
total_credits = 0

# Calculate enterprise efficiency
num_batches = (len(all_cve_ids) + batch_size - 1) // batch_size
enterprise_credits = num_batches * 35
individual_credits = len(all_cve_ids) * 5
savings_percent = ((individual_credits - enterprise_credits) / individual_credits) * 100

print(f"Enterprise Processing: {len(all_cve_ids)} CVEs")
print(f"Batches: {num_batches} × 35 credits = {enterprise_credits} credits")
print(f"vs Individual: {len(all_cve_ids)} × 5 credits = {individual_credits} credits")
print(f"Cost Savings: {savings_percent:.1f}%")

# Process in optimized batches
for i in range(0, len(all_cve_ids), batch_size):
batch = all_cve_ids[i:i + batch_size]

# Use enterprise batch with field optimization
result = enterprise_batch_optimized(batch, api_key, 'standard')

if result.get('data', {}).get('cves'):
batch_cves = list(result['data']['cves'].values())
all_results.extend(batch_cves)
total_credits += 35

print(f"\nCompleted: {len(all_results)} CVEs, {total_credits} credits used")
print(f"Efficiency: {len(all_results)/total_credits:.1f} CVEs per credit")

return all_results

# Example: Process 1000 CVEs efficiently
large_dataset = [f"CVE-2024-{str(i).zfill(4)}" for i in range(1, 1001)]
results = process_large_dataset_optimized(large_dataset, api_key)
# Result: 86% cost savings + 98% fewer HTTP requests

4. Intelligent Caching Strategies

ETag-Based Caching

Implement proper ETag support for maximum cache efficiency:

import hashlib

class OptimizedCyberSecFeedClient:
def __init__(self, api_key):
self.api_key = api_key
self.etag_cache = {}
self.session = requests.Session()
self.session.headers.update({'X-API-Key': api_key})

def get_cve_cached(self, cve_id, params=None):
"""Get CVE with ETag caching support"""

url = f"https://api.cybersecfeed.com/api/v1/cve/{cve_id}"
cache_key = self._make_cache_key(url, params)

headers = {}
if cache_key in self.etag_cache:
headers['If-None-Match'] = self.etag_cache[cache_key]['etag']

response = self.session.get(url, params=params, headers=headers)

if response.status_code == 304:
# Cache hit - return cached data
return self.etag_cache[cache_key]['data']
elif response.status_code == 200:
# Cache miss - store new data
data = response.json()
if 'etag' in response.headers:
self.etag_cache[cache_key] = {
'etag': response.headers['etag'],
'data': data
}
return data
else:
response.raise_for_status()

def _make_cache_key(self, url, params):
"""Create cache key from URL and parameters"""
if params:
param_str = '&'.join(f"{k}={v}" for k, v in sorted(params.items()))
cache_input = f"{url}?{param_str}"
else:
cache_input = url
return hashlib.md5(cache_input.encode()).hexdigest()

# Usage
client = OptimizedCyberSecFeedClient(api_key)

# First request - cache miss
data1 = client.get_cve_cached('CVE-2024-0001') # ~200ms

# Second request - cache hit
data2 = client.get_cve_cached('CVE-2024-0001') # ~20ms

Application-Level Caching

from functools import lru_cache
import time

class CacheConfig:
CVE_CACHE_TTL = 3600 # 1 hour
STATS_CACHE_TTL = 300 # 5 minutes
KEV_CACHE_TTL = 1800 # 30 minutes

class TimedCache:
def __init__(self, ttl):
self.cache = {}
self.ttl = ttl

def get(self, key):
if key in self.cache:
data, timestamp = self.cache[key]
if time.time() - timestamp < self.ttl:
return data
else:
del self.cache[key]
return None

def set(self, key, value):
self.cache[key] = (value, time.time())

class CachedClient:
def __init__(self, api_key):
self.api_key = api_key
self.cve_cache = TimedCache(CacheConfig.CVE_CACHE_TTL)
self.stats_cache = TimedCache(CacheConfig.STATS_CACHE_TTL)

def get_cve(self, cve_id, use_cache=True):
if use_cache:
cached = self.cve_cache.get(cve_id)
if cached:
return cached

# Make API request
response = requests.get(
f"https://api.cybersecfeed.com/api/v1/cve/{cve_id}",
headers={'X-API-Key': self.api_key}
)
data = response.json()

if use_cache:
self.cve_cache.set(cve_id, data)

return data

4. Batch Operation Optimization

Efficient Batch Processing

def optimized_batch_processing(cve_ids, api_key):
"""Process CVEs in optimized batches"""

session = requests.Session()
session.headers.update({'X-API-Key': api_key})

# Use maximum batch size
batch_size = 50
all_results = []

for i in range(0, len(cve_ids), batch_size):
batch = cve_ids[i:i + batch_size]

# Optimize batch request
params = {
'ids': ','.join(batch),
'fields': 'id,cvss.baseScore,kev,epss.score', # Only essential data
# Include ACSC only if needed for this batch
# 'include': 'acsc'
}

response = session.get(
'https://api.cybersecfeed.com/api/v1/cves',
params=params
)

if response.status_code == 200:
batch_data = response.json()
all_results.extend(batch_data['data']['cves'])

# Small delay to avoid overwhelming the API
time.sleep(0.1)

return all_results

# Process 500 CVEs efficiently
large_cve_list = [f"CVE-2024-{str(i).zfill(4)}" for i in range(1, 501)]
results = optimized_batch_processing(large_cve_list, api_key)
print(f"Processed {len(results)} CVEs")

Parallel Processing with Rate Limiting

import asyncio
import aiohttp
from asyncio import Semaphore

class AsyncOptimizedClient:
def __init__(self, api_key, max_concurrent=10):
self.api_key = api_key
self.semaphore = Semaphore(max_concurrent)
self.base_url = "https://api.cybersecfeed.com/api/v1"

async def fetch_cve_batch(self, session, cve_ids, include_acsc=False):
"""Fetch a batch of CVEs asynchronously"""

async with self.semaphore: # Rate limiting
params = {
'ids': ','.join(cve_ids[:50]),
'fields': 'id,cvss.baseScore,kev,epss.score'
}
if include_acsc:
params['include'] = 'acsc'

async with session.get(
f"{self.base_url}/cves",
params=params,
headers={'X-API-Key': self.api_key}
) as response:
return await response.json()

async def process_large_list(self, all_cve_ids, include_acsc=False):
"""Process large CVE list with controlled concurrency"""

# Split into batches of 50
batches = [all_cve_ids[i:i+50] for i in range(0, len(all_cve_ids), 50)]

async with aiohttp.ClientSession() as session:
tasks = [
self.fetch_cve_batch(session, batch, include_acsc)
for batch in batches
]

batch_results = await asyncio.gather(*tasks)

# Combine all results
all_cves = []
for batch_result in batch_results:
if batch_result.get('data', {}).get('cves'):
all_cves.extend(batch_result['data']['cves'])

return all_cves

# Usage
async def main():
client = AsyncOptimizedClient(api_key, max_concurrent=5)
large_list = [f"CVE-2024-{str(i).zfill(4)}" for i in range(1, 1001)]

start_time = time.time()
results = await client.process_large_list(large_list)
end_time = time.time()

print(f"Processed {len(results)} CVEs in {end_time - start_time:.2f} seconds")

# Run async processing
asyncio.run(main())

5. Connection Optimization

Connection Pooling

from requests.adapters import HTTPAdapter
from urllib3.util.retry import Retry

class OptimizedSession:
def __init__(self, api_key):
self.session = requests.Session()

# Configure connection pooling
adapter = HTTPAdapter(
pool_connections=10, # Number of connection pools
pool_maxsize=20, # Max connections per pool
max_retries=Retry(
total=3,
status_forcelist=[429, 500, 502, 503, 504],
backoff_factor=1,
respect_retry_after_header=True
)
)

self.session.mount('https://', adapter)
self.session.headers.update({
'X-API-Key': api_key,
'User-Agent': 'MyApp/1.0 (Optimized)',
'Accept-Encoding': 'gzip, deflate'
})

def get(self, url, **kwargs):
return self.session.get(url, **kwargs)

# Use persistent session
session = OptimizedSession(api_key)

# Multiple requests reuse connections
for cve_id in cve_list:
response = session.get(f"https://api.cybersecfeed.com/api/v1/cve/{cve_id}")

Timeout Optimization

# Configure timeouts for different operations
TIMEOUTS = {
'ping': (2, 5), # (connect, read) in seconds
'cve_detail': (3, 10),
'search': (5, 30),
'batch': (5, 60),
'stats': (3, 15)
}

def get_cve_with_timeout(cve_id, operation_type='cve_detail'):
timeout = TIMEOUTS.get(operation_type, (5, 30))

response = requests.get(
f"https://api.cybersecfeed.com/api/v1/cve/{cve_id}",
headers={'X-API-Key': api_key},
timeout=timeout
)
return response.json()

6. Detail Endpoint Optimization

When to Use Detail vs Standard Endpoints

The detail endpoint provides comprehensive data but has higher latency. Choose wisely:

class SmartCVEClient:
"""Intelligent endpoint selection based on use case"""

def __init__(self, api_key):
self.api_key = api_key
self.base_url = "https://api.cybersecfeed.com/api/v1"
self.headers = {"X-API-Key": api_key}

def get_cve_optimized(self, cve_id, use_case="dashboard"):
"""Select optimal endpoint based on use case"""

strategies = {
"dashboard": self._get_minimal,
"risk_scoring": self._get_enriched,
"patch_management": self._get_detailed,
"security_research": self._get_full_detail,
"compliance": self._get_compliance_data
}

return strategies.get(use_case, self._get_minimal)(cve_id)

def _get_minimal(self, cve_id):
"""Minimal data for dashboards - fastest"""
params = {"fields": "id,cvss.baseScore,cvss.baseSeverity,kev,epss.score"}
response = requests.get(
f"{self.base_url}/cve/{cve_id}",
headers=self.headers,
params=params
)
return response.json()

def _get_enriched(self, cve_id):
"""Enriched data for risk scoring"""
params = {"include": "enrichment"}
response = requests.get(
f"{self.base_url}/cve/{cve_id}",
headers=self.headers,
params=params
)
return response.json()

def _get_detailed(self, cve_id):
"""Detailed data for patch management"""
response = requests.get(
f"{self.base_url}/cve/{cve_id}/detail",
headers=self.headers
)
return response.json()

def _get_full_detail(self, cve_id, vendor="nvd"):
"""Full vendor-specific detail for research"""
params = {"vendor": vendor}
response = requests.get(
f"{self.base_url}/cve/{cve_id}/detail",
headers=self.headers,
params=params
)
return response.json()

def _get_compliance_data(self, cve_id):
"""Optimized for compliance reporting"""
# First, get basic data with specific fields
params = {
"fields": "id,published,cvss,kev,epss",
"include": "acsc"
}
response = requests.get(
f"{self.base_url}/cve/{cve_id}",
headers=self.headers,
params=params
)
return response.json()

Detail Endpoint Performance Characteristics

ScenarioEndpointResponse TimeCache TTLPayload Size
Quick check/cve/{id}?fields=id,cvss<150ms1 hour~500B
Risk assessment/cve/{id}?include=enrichment<250ms2 hours~2KB
Full analysis/cve/{id}/detail<500ms24 hours~10-50KB
Vendor-specific/cve/{id}/detail?vendor=cisco<600ms24 hours~10-100KB

Caching Strategy for Detail Endpoint

import hashlib
import time
from typing import Optional, Dict, Tuple

class DetailEndpointCache:
"""Aggressive caching for detail endpoint data"""

def __init__(self, api_key: str):
self.api_key = api_key
self.cache = {} # In production, use Redis or similar
self.cache_ttl = {
"detail": 86400, # 24 hours for detailed data
"enrichment": 7200, # 2 hours for enrichment
"basic": 3600 # 1 hour for basic data
}

def get_cve_detail(self, cve_id: str, vendor: str = "nvd",
force_refresh: bool = False) -> Optional[Dict]:
"""Get CVE detail with aggressive caching"""

cache_key = self._make_cache_key(cve_id, vendor, "detail")

# Check cache first
if not force_refresh:
cached_data = self._get_from_cache(cache_key, "detail")
if cached_data:
return cached_data

# Fetch from API
url = f"https://api.cybersecfeed.com/api/v1/cve/{cve_id}/detail"
params = {"vendor": vendor} if vendor != "nvd" else {}
headers = {"X-API-Key": self.api_key}

response = requests.get(url, headers=headers, params=params)

if response.status_code == 200:
data = response.json()

# Check if we got full or partial data
if data.get("data", {}).get("status") == "partial":
# Partial data - shorter cache
self._set_cache(cache_key, data, ttl_override=3600)
else:
# Full data - long cache
self._set_cache(cache_key, data, cache_type="detail")

return data
elif response.status_code == 404:
# Cache negative responses too
self._set_cache(cache_key, None, ttl_override=3600)
return None
else:
response.raise_for_status()

def _make_cache_key(self, cve_id: str, vendor: str, cache_type: str) -> str:
"""Generate cache key"""
key_input = f"{cve_id}:{vendor}:{cache_type}"
return hashlib.md5(key_input.encode()).hexdigest()

def _get_from_cache(self, key: str, cache_type: str) -> Optional[Dict]:
"""Retrieve from cache if not expired"""
if key in self.cache:
data, timestamp = self.cache[key]
ttl = self.cache_ttl.get(cache_type, 3600)

if time.time() - timestamp < ttl:
return data
else:
# Expired - remove from cache
del self.cache[key]

return None

def _set_cache(self, key: str, data: Optional[Dict],
cache_type: str = "detail", ttl_override: int = None):
"""Store in cache with TTL"""
ttl = ttl_override or self.cache_ttl.get(cache_type, 3600)
self.cache[key] = (data, time.time())

# Usage
cache_client = DetailEndpointCache(api_key)

# First request - API call
detail1 = cache_client.get_cve_detail("CVE-2024-0001") # ~500ms

# Second request - cached
detail2 = cache_client.get_cve_detail("CVE-2024-0001") # ~1ms

# Vendor-specific with caching
cisco_detail = cache_client.get_cve_detail("CVE-2024-0001", vendor="cisco")

Progressive Loading Pattern

Optimize user experience with progressive data loading:

import asyncio
import aiohttp
from typing import Dict, Optional

class ProgressiveCVELoader:
"""Load CVE data progressively for optimal UX"""

def __init__(self, api_key: str):
self.api_key = api_key
self.headers = {"X-API-Key": api_key}
self.base_url = "https://api.cybersecfeed.com/api/v1"

async def load_cve_progressive(self, cve_id: str, callback):
"""Load CVE data in stages, calling callback for each stage"""

async with aiohttp.ClientSession() as session:
# Stage 1: Basic data (fastest)
basic_data = await self._fetch_basic(session, cve_id)
await callback("basic", basic_data)

# Stage 2: Enrichment (medium speed)
enrichment_data = await self._fetch_enrichment(session, cve_id)
await callback("enrichment", enrichment_data)

# Stage 3: Full detail (slowest, if needed)
if self._needs_detail(basic_data, enrichment_data):
detail_data = await self._fetch_detail(session, cve_id)
await callback("detail", detail_data)

async def _fetch_basic(self, session, cve_id: str) -> Dict:
"""Fetch minimal CVE data"""
url = f"{self.base_url}/cve/{cve_id}"
params = {"fields": "id,cvss,kev,epss"}

async with session.get(url, headers=self.headers, params=params) as response:
return await response.json()

async def _fetch_enrichment(self, session, cve_id: str) -> Dict:
"""Fetch enrichment data"""
url = f"{self.base_url}/cve/{cve_id}"
params = {"include": "enrichment,attack"}

async with session.get(url, headers=self.headers, params=params) as response:
return await response.json()

async def _fetch_detail(self, session, cve_id: str) -> Dict:
"""Fetch full detail data"""
url = f"{self.base_url}/cve/{cve_id}/detail"

async with session.get(url, headers=self.headers) as response:
return await response.json()

def _needs_detail(self, basic_data: Dict, enrichment_data: Dict) -> bool:
"""Determine if full detail is needed"""
# Load detail for high-value CVEs
cve = basic_data.get("data", {}).get("cve", {})
cvss_score = cve.get("cvss", {}).get("baseScore", 0)
has_kev = "kev" in cve

return cvss_score >= 7.0 or has_kev

# Usage example
async def handle_cve_data(stage: str, data: Dict):
"""Handle data as it arrives"""
if stage == "basic":
print(f"Quick display: CVE {data['data']['cve']['id']}")
# Update UI with basic info immediately
elif stage == "enrichment":
print("Adding enrichment data to display")
# Enhance UI with enrichment
elif stage == "detail":
print("Full detail loaded")
# Show complete information

async def main():
loader = ProgressiveCVELoader(api_key)
await loader.load_cve_progressive("CVE-2024-0001", handle_cve_data)

# Run progressive loading
asyncio.run(main())

7. Use Case-Specific Optimizations

High-Frequency Monitoring

class HighFrequencyMonitor:
"""Optimized for frequent checks with minimal data"""

def __init__(self, api_key):
self.client = OptimizedCyberSecFeedClient(api_key)
self.last_check = None

def check_new_critical_cves(self):
"""Fast check for new critical CVEs"""

# Use minimal fields for speed
params = {
'severity_min': 9.0,
'limit': 10,
'fields': 'id,published,cvss.baseScore'
}

if self.last_check:
params['published_after'] = self.last_check

response = self.client.session.get(
'https://api.cybersecfeed.com/api/v1/cves',
params=params
)

self.last_check = datetime.utcnow().isoformat()
return response.json()

Bulk Data Analysis

class BulkAnalyzer:
"""Optimized for processing large datasets"""

def __init__(self, api_key):
self.api_key = api_key

def analyze_cve_list(self, cve_ids):
"""Analyze large CVE list with optimal batching"""

# Process in chunks with minimal data
results = []
chunk_size = 50

for i in range(0, len(cve_ids), chunk_size):
chunk = cve_ids[i:i + chunk_size]

response = requests.get(
'https://api.cybersecfeed.com/api/v1/cves',
params={
'ids': ','.join(chunk),
'fields': 'id,cvss.baseScore,kev,epss.score'
},
headers={'X-API-Key': self.api_key}
)

if response.status_code == 200:
chunk_data = response.json()['data']['cves']
results.extend(chunk_data)

return self.calculate_risk_metrics(results)

def calculate_risk_metrics(self, cves):
"""Fast risk calculation on minimal data"""

metrics = {
'total_cves': len(cves),
'critical_count': 0,
'kev_count': 0,
'high_epss_count': 0,
'avg_cvss': 0
}

total_cvss = 0
for cve in cves:
cvss_score = cve.get('cvss', {}).get('baseScore', 0)
total_cvss += cvss_score

if cvss_score >= 9.0:
metrics['critical_count'] += 1

if cve.get('kev'):
metrics['kev_count'] += 1

if cve.get('epss', {}).get('score', 0) > 0.7:
metrics['high_epss_count'] += 1

metrics['avg_cvss'] = total_cvss / len(cves) if cves else 0
return metrics

7. Performance Monitoring

Response Time Tracking

import time
from collections import defaultdict

class PerformanceTracker:
def __init__(self):
self.metrics = defaultdict(list)

def track_request(self, operation, func, *args, **kwargs):
"""Track request performance"""

start_time = time.time()
try:
result = func(*args, **kwargs)
success = True
except Exception as e:
result = None
success = False

duration = time.time() - start_time

self.metrics[operation].append({
'duration': duration,
'success': success,
'timestamp': time.time()
})

return result

def get_stats(self, operation):
"""Get performance statistics"""

if operation not in self.metrics:
return None

durations = [m['duration'] for m in self.metrics[operation] if m['success']]

if not durations:
return None

return {
'count': len(durations),
'avg': sum(durations) / len(durations),
'min': min(durations),
'max': max(durations),
'p95': sorted(durations)[int(len(durations) * 0.95)]
}

# Usage
tracker = PerformanceTracker()

# Track CVE requests
def get_cve_tracked(cve_id):
return tracker.track_request(
'cve_detail',
lambda: requests.get(
f"https://api.cybersecfeed.com/api/v1/cve/{cve_id}",
headers={'X-API-Key': api_key}
).json()
)

# Get performance stats
stats = tracker.get_stats('cve_detail')
print(f"Average response time: {stats['avg']:.3f}s")
print(f"95th percentile: {stats['p95']:.3f}s")

8. Optimization Checklist

Pre-Optimization Audit

  • Identify which enrichment data you actually use
  • Review field usage - are you reading all returned fields?
  • Check for duplicate or unnecessary API calls
  • Measure current response times and bandwidth usage

Implementation

  • Implement parameter-based data loading (include parameters)
  • Add field projection for targeted data retrieval
  • Set up proper ETag-based caching
  • Use batch operations for multiple CVE lookups
  • Configure connection pooling and timeouts

Monitoring

  • Track response times and cache hit rates
  • Monitor credit usage via /api/v1/usage endpoint (0 credits)
  • Set up alerts for performance degradation and credit efficiency
  • Regular performance testing with realistic v1.5 feature usage
  • Track enterprise batch savings and field selection effectiveness

Advanced Optimizations

  • Implement application-level caching with TTL
  • Use async processing for bulk operations
  • Consider CDN or proxy caching for frequently accessed data
  • Optimize data processing pipelines for minimal memory usage

Enterprise Performance Gains (v1.5)

Following this v1.5 optimization guide delivers transformational results:

OptimizationPerformance ImprovementBandwidth ReductionCredit Efficiency
Advanced Field Selection30-60% faster85% lessSame 5 credits, minimal data
Enterprise Batch Operations50x faster (bulk)Overhead eliminated86% credit savings
Smart Sorting & Filtering20-40% faster queriesTargeted resultsPrecise data retrieval
ETag Caching80-95% faster (cached)95%+ reductionNear-zero credit usage
Combined v1.5 Features10-50x improvement85-95% reductionMassive enterprise savings

Real-World Enterprise Impact

ScenarioBefore (Individual)After (v1.5 Enterprise)Improvement
1000 CVE Analysis5,000 credits, 50+ seconds700 credits, 2-5 seconds86% cheaper, 90% faster
Daily SOC Monitoring1,000 credits/day150 credits/day85% cost reduction
Compliance ReportingHigh bandwidth, slowField-selected, instant95% bandwidth savings
Threat IntelligenceMultiple API callsSingle batch + enrichmentEnterprise efficiency

These v1.5 optimizations deliver enterprise-grade performance while dramatically reducing credit consumption and providing superior user experience through ultra-fast response times.